metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Chlorophenyl)piperazine-1,4-diium tetrachloridozincate(II) monohydrate

Imen Ben Gharbia,^a Riadh Kefi,^a Meher El Glaoui,^a Erwann Jeanneau^b and Cherif Ben Nasr^a*

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and ^bUniverstié Lyon 1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 22 May 2008; accepted 30 May 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.053; wR factor = 0.063; data-to-parameter ratio = 18.5.

In the crystal structure of the title compound, $(C_{10}H_{15}ClN_2)$ -[ZnCl₄]·H₂O, the Zn atom is coordinated by four Cl atoms in a tetrahedral geometry. The water molecules and the 1-(4chlorophenyl)piperazine-1,4-diium cations interact with the [ZnCl₄]²⁻ anions through O-H···Cl, N-H···Cl, N-H···O and C-H···Cl hydrogen bonds (five simple and one bifurcated). Intermolecular π - π stacking interactions are present between adjacent aromatic rings of 1-(4-chlorophenyl)piperazine-1,4-diium cations (the centroid–centroid distance is 3.453 Å).

Related literature

For related literature, see: Ben Gharbia *et al.* (2005); Guo *et al.* (2007); Valkonen *et al.* (2006); Janiak (2000).

Experimental

Crystal data

 $(C_{10}H_{15}CIN_2)[ZnCl_4]\cdot H_2O$ $M_r = 423.90$ Monoclinic, $P2_1/c$ a = 7.2036 (2) Å b = 15.1575 (5) Å c = 15.4870 (5) Å $\beta = 103.012$ (2)° $V = 1647.58 (9) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 2.29 \text{ mm}^{-1}\) T = 293 K 0.44 \times 0.28 \times 0.23 \text{ mm}\)

Data collection

Nonius KappaCCD diffractometer

Absorption correction: analytical (de Meulenaer & Tompa, 1965) $T_{min} = 0.34, T_{max} = 0.59$ 20612 measured reflections3369 reflections with $I > 2\sigma(I)$ 3901 independent reflections $R_{int} = 0.085$ Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ 173 parameters $wR(F^2) = 0.063$ H-atom parameters constrainedS = 0.89 $\Delta \rho_{max} = 0.41$ e Å⁻³3203 reflections $\Delta \rho_{min} = -0.69$ e Å⁻³

Table 1

Selected bond lengths (Å).

Zn1-Cl1	2.3036 (11)	Zn1-Cl3	2.2495 (13)
Zn1-Cl2	2.2937 (11)	Zn1-Cl4	2.2420 (12)

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$V1 - H15 \cdots O1$ $V2 - H16 \cdots C14^{i}$ $V2 - H16 \cdots C12^{i}$ $V2 - H17 \cdots C11$ $D1 - H1 \cdots C12^{ii}$ $D1 - H2 \cdots C13^{iii}$ $T5 - H5 \cdots C14^{iv}$	0.89 0.89 0.89 0.89 0.81 0.82 0.93	1.86 2.53 2.77 2.42 2.61 2.52 2.76	2.742 (6) 3.249 (4) 3.352 (3) 3.261 (5) 3.342 (3) 3.258 (4) 3.686 (5)	169 137 123 156 149 149 168

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *CRYSTALS*.

We acknowledge the Tunisian Secretariat of State for Scientific Research and Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2190).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333–334.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Valkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290–m292.

supplementary materials

Acta Cryst. (2008). E64, m880 [doi:10.1107/S1600536808016590]

1-(4-Chlorophenyl)piperazine-1,4-diium tetrachloridozincate(II) monohydrate

I. Ben Gharbia, R. Kefi, M. El Glaoui, E. Jeanneau and C. Ben Nasr

Comment

The crystal structure of the title compound, (I), (Fig. 1), contains a [ZnCl4]²⁻ tetrahedral anion, a 1-(4chlorophenyl)piperazine-1,4-dium (2+) cation and a water molecule. Fig. 2 shows the atomic arrangement, which can be described as built up by [ZnCl4] tetrahedra interconnected through water molecules via a O-H···Cl bond to form chains which evolve along the a direction. These $[ZnCl_4]$. $[H_2O]$ chains are interconnected into a three-dimensional network by the organic entities through N—H···Cl, C—H···Cl bonds and π - π interactions. Fig.3 shows the way in which two adjacent aromatic rings of the 1-(4-chlorophenyl)piperazine-1,4-dium cations run parallel in the opposite direction and stack each other by turns in a face-to-face mode. The nearest centroid-centroid distance is 3.453 (1) Å, less than 3.8 Å, the maximum value accepted for π - π interactions (Janiak, 2000). Generally, the Zn—Cl bond lengths and Cl—Zn—Cl bond angles in the $[ZnCl_4]^{2-}$ anion are not equal to one another but vary with the environment around the Cl atoms (Valkonen *et al.*, 2006). In the title compound, the four chlorine atoms of the $[ZnCl_4]^{2-}$ anion are acting as acceptors of the hydrogen bonds. The bond angles Cl—Zn—Cl vary from 103.37 (5) to 115.30 (5)°, and the bond length of the Zn—Cl lie in the range 2.2420 (12) - 2.3036 (11) Å. Owing to these differences in Zn-Cl bond lengths and Cl-Zn-Cl angles, the coordination geometry of the Zn atom can be described as a slightly distorted tetrahedron (as in Guo et al., 2007). The nearst Zn…Zn intra-chain separation is 7.204 (1) Å, while the distance between adjacent chains is 6.370 (2) Å. Examination of the organic cation geometry shows that the piperazine-1,4-dium ring adopts a typical chair conformation and its geometric parameters $[d_{av}(C-N)]$ = 1.501 (4) and $d_{av}(C-C) = 1.508$ (4) Å] are in full agreement with those found in phenylpiperazinium tetrachlorozincate (Ben Gharbia et al., 2005).

Experimental

 $ZnCl_2$, aqueous 1*M* HCl solution and 1-(4-chlorophenyl)piperazine in a 1:2:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of (I) grew as the ethanol evaporated at 293 K over the course of a few days.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints. The refinement was carried out with 3203 reflections with I>3 σ (I). The R factors reported are those calculated for I>2 σ (I) (3369 reflections)

Figures

Fig. 1. A view of (I), showing 40% probability displacement ellipsoids and arbitrary spheres for the H atoms.

Fig. 2. A stereoview of part of the crystal structure showing the formation of (100) chains formed by $[ZnCl_4]^{2-}$ tetrahedral anions interconnected through the water molecules.

Fig. 3. The packing of (I), viewed down the *a* axis, showing the N—H···Cl, C—H···Cl and O—H···Cl hydrogen bonds between the 1-(4-chlorophenyl)piperazine-1,4-dium cations, water molecules and $[ZnCl_4]^{2-}$ anions.

1-(4-chlorophenyl)piperazine-1,4-diium tetrachloridozincate(II) monohydrate

Crystal data	
$(C_{10}H_{15}ClN_2)[ZnCl_4]\cdot H_2O$	$F_{000} = 856$
$M_r = 423.90$	$D_{\rm x} = 1.709 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: -P 2ybc	Cell parameters from 19642 reflections
a = 7.2036 (2) Å	$\theta = 0.7 - 27.9^{\circ}$
<i>b</i> = 15.1575 (5) Å	$\mu = 2.29 \text{ mm}^{-1}$
c = 15.4870 (5) Å	<i>T</i> = 293 K
$\beta = 103.012 \ (2)^{\circ}$	Plate, colorless
$V = 1647.58 (9) \text{ Å}^3$	$0.44 \times 0.28 \times 0.23 \text{ mm}$
Z = 4	
Data collection	

Nonius KappaCCD diffractometer	3369 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.085$

T = 293 K	$\theta_{max} = 28.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: analytical (de Meulenaer & Tompa, 1965)	$h = -9 \rightarrow 9$
$T_{\min} = 0.34, \ T_{\max} = 0.59$	$k = -17 \rightarrow 19$
20612 measured reflections	$l = -20 \rightarrow 20$
3901 independent reflections	

Refinement

Refinement on F	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	weight = $1.0/[1.57 + 1.32*x + 0.866*(2x^2-1)] * [1-(deltaF/6*sigmaF)^2]^2$ where x = F /Fmax
$wR(F^2) = 0.063$	$(\Delta/\sigma)_{\rm max} = 0.0004$
<i>S</i> = 0.90	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
3203 reflections	$\Delta \rho_{min} = -0.69 \text{ e } \text{\AA}^{-3}$
173 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

:	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.58976 (7)	0.36124 (3)	0.65838 (3)	0.0375
Cl1	0.29500 (16)	0.42310 (8)	0.60275 (7)	0.0461
Cl2	0.75399 (15)	0.36476 (7)	0.54758 (6)	0.0415
C13	0.5442 (2)	0.22604 (8)	0.70986 (10)	0.0568
Cl4	0.7715 (2)	0.44230 (9)	0.76618 (7)	0.0560
C15	0.29277 (18)	-0.13523 (7)	0.48834 (10)	0.0558
C1	0.2020 (5)	0.1446 (2)	0.4005 (2)	0.0312
C2	0.2558 (6)	0.0844 (3)	0.3443 (3)	0.0410
C3	0.2866 (7)	-0.0026 (3)	0.3717 (3)	0.0442
C4	0.2642 (6)	-0.0255 (3)	0.4557 (3)	0.0404
C5	0.2183 (7)	0.0359 (3)	0.5131 (3)	0.0441
C6	0.1869 (7)	0.1230 (3)	0.4851 (3)	0.0399
C7	-0.0002 (6)	0.2802 (3)	0.3894 (3)	0.0404
C8	-0.0229 (6)	0.3724 (3)	0.3515 (3)	0.0433
C9	0.3249 (7)	0.3838 (3)	0.3692 (3)	0.0468
C10	0.3479 (6)	0.2911 (3)	0.4050 (3)	0.0406
N1	0.1724 (5)	0.2369 (2)	0.3687 (2)	0.0313
N2	0.1516 (6)	0.4259 (2)	0.3875 (3)	0.0466
01	0.0861 (5)	0.2511 (3)	0.1875 (2)	0.0530
H1	-0.0199	0.2401	0.1574	0.0730*
H2	0.1897	0.2453	0.1746	0.0730*
H3	0 2669	0 1008	0.2860	0.0471*

supplementary materials

H4	0.3213	-0.0443	0.3350	0.0503*
Н5	0.2084	0.0191	0.5702	0.0511*
Н6	0.1563	0.1671	0.5231	0.0473*
H7	-0.1133	0.2465	0.3632	0.0448*
H8	0.0133	0.2821	0.4533	0.0447*
Н9	-0.0388	0.3688	0.2866	0.0492*
H10	-0.1329	0.4027	0.3654	0.0493*
H11	0.3148	0.3815	0.3047	0.0543*
H12	0.4375	0.4194	0.3985	0.0543*
H13	0.4580	0.2643	0.3887	0.0434*
H14	0.3750	0.2920	0.4706	0.0430*
H15	0.1556	0.2362	0.3097	0.0410*
H16	0.1361	0.4792	0.3623	0.0620*
H17	0.1605	0.4357	0.4450	0.0620*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0394 (2)	0.0380 (2)	0.0350 (2)	-0.00079 (19)	0.00810 (19)	0.00223 (18)
C11	0.0445 (5)	0.0526 (6)	0.0407 (5)	0.0090 (5)	0.0082 (4)	0.0053 (4)
C12	0.0449 (5)	0.0428 (5)	0.0392 (5)	-0.0021 (4)	0.0146 (4)	-0.0012 (4)
C13	0.0650 (7)	0.0405 (6)	0.0698 (7)	0.0029 (5)	0.0255 (6)	0.0136 (5)
Cl4	0.0704 (7)	0.0562 (7)	0.0350 (5)	-0.0084 (6)	-0.0019 (5)	-0.0027 (4)
C15	0.0547 (6)	0.0338 (5)	0.0785 (8)	0.0044 (4)	0.0140 (6)	0.0126 (5)
C1	0.0360 (16)	0.0256 (15)	0.0309 (16)	-0.0002 (14)	0.0055 (14)	-0.0033 (13)
C2	0.048 (2)	0.039 (2)	0.0367 (19)	0.0017 (17)	0.0105 (16)	-0.0033 (16)
C3	0.050 (2)	0.034 (2)	0.047 (2)	0.0069 (17)	0.0085 (18)	-0.0077 (17)
C4	0.0367 (18)	0.0305 (18)	0.051 (2)	0.0021 (15)	0.0034 (16)	0.0003 (16)
C5	0.050 (2)	0.042 (2)	0.041 (2)	0.0025 (18)	0.0112 (17)	0.0089 (17)
C6	0.050 (2)	0.037 (2)	0.0339 (19)	0.0010 (16)	0.0124 (16)	-0.0005 (15)
C7	0.0351 (18)	0.037 (2)	0.051 (2)	0.0050 (15)	0.0128 (16)	0.0027 (17)
C8	0.042 (2)	0.039 (2)	0.049 (2)	0.0095 (17)	0.0085 (17)	0.0014 (17)
C9	0.047 (2)	0.035 (2)	0.054 (2)	-0.0055 (17)	0.0040 (18)	0.0071 (18)
C10	0.0354 (18)	0.033 (2)	0.049 (2)	-0.0031 (15)	0.0012 (16)	0.0045 (16)
N1	0.0391 (16)	0.0263 (14)	0.0274 (13)	0.0008 (12)	0.0055 (12)	0.0007 (11)
N2	0.065 (2)	0.0284 (16)	0.0424 (18)	0.0037 (15)	0.0030 (17)	-0.0020 (13)
01	0.0519 (18)	0.067 (2)	0.0389 (15)	0.0008 (16)	0.0065 (14)	-0.0023 (14)

Geometric parameters (Å, °)

2.3036 (11)	С7—Н7	0.970
2.2937 (11)	C8—N2	1.494 (6)
2.2495 (13)	C8—H10	0.980
2.2420 (12)	С8—Н9	0.988
1.738 (4)	N2—C9	1.485 (7)
1.389 (7)	N2—H16	0.893
1.378 (6)	N2—H17	0.891
1.388 (6)	C9—C10	1.506 (6)
0.922	С9—Н12	0.995
	2.3036 (11) 2.2937 (11) 2.2495 (13) 2.2420 (12) 1.738 (4) 1.389 (7) 1.378 (6) 1.388 (6) 0.922	2.3036 (11) C7—H7 2.2937 (11) C8—N2 2.2495 (13) C8—H10 2.2420 (12) C8—H9 1.738 (4) N2—C9 1.389 (7) N2—H16 1.378 (6) N2—H17 1.388 (6) C9—C10 0.922 C9—H12

C2—C1	1.376 (5)	С9—Н11	0.985
С2—Н3	0.943	C10—H14	0.990
C1—N1	1.482 (5)	С10—Н13	0.973
C1—C6	1.378 (5)	C6—C5	1.392 (6)
N1—C7	1.504 (5)	С6—Н6	0.948
N1—C10	1.507 (5)	С5—Н5	0.938
N1—H15	0.893	O1—H2	0.820
С7—С8	1.511 (6)	O1—H1	0.818
С7—Н8	0.973		
Cl1—Zn1—Cl2	107.34 (4)	С7—С8—Н10	111.7
Cl1—Zn1—Cl3	107.92 (5)	N2-C8-H10	108.6
Cl2—Zn1—Cl3	115.30 (5)	С7—С8—Н9	108.8
Cl1—Zn1—Cl4	112.95 (5)	N2—C8—H9	107.7
Cl2—Zn1—Cl4	103.37 (5)	Н10—С8—Н9	109.7
Cl3—Zn1—Cl4	110.04 (5)	C8—N2—C9	111.6 (3)
Cl5—C4—C3	118.7 (3)	C8—N2—H16	108.4
Cl5—C4—C5	119.2 (3)	C9—N2—H16	109.4
C3—C4—C5	122.1 (4)	C8—N2—H17	109.2
C4—C3—C2	118.6 (4)	C9—N2—H17	112.9
C4—C3—H4	120.8	H16—N2—H17	105.0
С2—С3—Н4	120.6	N2	110.9 (4)
C3—C2—C1	119.0 (4)	N2—C9—H12	108.3
С3—С2—Н3	119.7	С10—С9—Н12	109.1
С1—С2—Н3	121.2	N2—C9—H11	109.6
C2C1N1	117.1 (3)	С10—С9—Н11	108.5
C2—C1—C6	122.5 (4)	H12—C9—H11	110.5
N1—C1—C6	120.3 (3)	N1—C10—C9	111.0 (3)
C1—N1—C7	113.9 (3)	N1-C10-H14	110.2
C1—N1—C10	110.1 (3)	С9—С10—Н14	110.2
C7—N1—C10	110.3 (3)	N1-C10-H13	109.9
C1—N1—H15	107.8	С9—С10—Н13	108.7
C7—N1—H15	107.2	H14—C10—H13	106.7
C10—N1—H15	107.3	C1—C6—C5	118.7 (4)
N1—C7—C8	110.1 (3)	С1—С6—Н6	120.0
N1—C7—H8	109.4	С5—С6—Н6	121.2
С8—С7—Н8	110.2	C6—C5—C4	119.0 (4)
N1—C7—H7	109.7	С6—С5—Н5	120.7
С8—С7—Н7	108.5	С4—С5—Н5	120.4
Н8—С7—Н7	108.9	H2—O1—H1	128.4
C7—C8—N2	110.4 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H15…O1	0.89	1.86	2.742 (6)	169
N2—H16···Cl4 ⁱ	0.89	2.53	3.249 (4)	137
N2—H16····Cl2 ⁱ	0.89	2.77	3.352 (3)	123
N2—H17…Cl1	0.89	2.42	3.261 (5)	156

supplementary materials

O1—H1···Cl2 ⁱⁱ	0.81	2.61	3.342 (3)	149	
O1—H2···Cl3 ⁱⁱⁱ	0.82	2.52	3.258 (4)	149	
C5—H5···Cl4 ^{iv}	0.93	2.76	3.686 (5)	168	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $x-1$, $-y+1/2$, $z-1/2$; (iii) x , $-y+1/2$, $z-1/2$; (iv) $-x+1$, $y-1/2$, $-z+3/2$.					

Fig. 1

Fig. 2

Fig. 3